

On the Underestimated Impact of Gelation Temperature on Macro- and Mesoporosity in the Preparation of Monolithic Silica

<u>Rafael Meinusch,^a Kristof Hormann,^{b,c} Ulrich Tallarek,^c Bernd M. Smarsly^a</u> ^aInstitute of Physical Chemistry, Justus-Liebig-University Giessen, Germany. ^bThermo Fisher Scientific, Germany. ^cDepartment of Chemistry, Philipps-University Marburg, Germany.

an

Introduction

- Macro- and mesoporous monolithic silica for electrochemical applications, adsorption, catalysis and separation
- Relationship between preparation protocol and mass transport properties is the origin of an optimized performance
- Reproducibility and homogeneity are essential

▲ N₂-Physisorption

Isotherms and pore size distributions (PSDs) show

Mesoporosity

mesoporosity is supposed to be generated during hydrothermal treatment (identical for all samples)

▲ Combined porosity data Mean mesopore size as a function of macropore size

▲ Synthesis

- A) Silica precursor, acidic catalyst, organic polymer (PEG) and urea
- B) Phase separation induced by spinodal decomposition and frozen
 - in by gelation (formation of macropores)
- C) Further condensation leads to shrinkage
- D) Decomposition of urea induces dissolution and reprecipitation
 - process (formation of mesopores)
- E) Organic moieties are decomposed

- systematic: unexpected and mode mesopore size stays constant (12 nm) change <u>systematic</u> in mesoporosity
 - emergence of additional bigger mesopores

Micro-/mesoporosity prior to hydrothermal treatment

\blacktriangle N₂-Physisorption

- Isotherms and PSDs show a big difference in micro-/mesoporosity ulletdirectly after gelation (temperatures are designated)
- Dissolution and reprecipitation mechanism cannot be neglected at low temperatures and acidic conditions
- Differences at this stage may impact mesopore formation during hydrothermal treatment

▲ Meso-/microporosity Scheme illustrating increased micro- and mesopore formation at higher gelation temperature

Macroporosity

Gelation temperature

28.0°C

^{3/g]}

0.00

0

Mesoporosity as a function of macroporosity

Pore diameter [nm]

Macro-/mesoporosity

Change in macroporosity is predominantly a consequence of the accelerated sol-gel transition \rightarrow Structure created by phaseseparation is frozen in earlier at higher gelation temperatures

- 60 [cm³/g] 50 40 dV/dlogd 30 20 This 1000 10000 Pore diameter [nm] [cm³/g] 0 20 30 40 50 \mathbf{O} 10 Pore diameter [nm]
- Samples prepared at different gelation temperatures possess similar mesoporosity when macroporosity is similar (PEG amount adjusted) indicates that mesoporosity is a function of macroporosity
 - Postulated mechanism

Dissolution-reprecipitation is pronounced at interface macropore/ skeleton

Emergence of additionnal bigger mesopores for smaller macropores /skeletons

Example of use / Conclusion

▼ Example of use

Impact of quality of gelation temperature control is shown exemplarily for monolithic silica capillary columns in HPLC

- Strong sensitivity of the porosity, especially the macropore size, towards gelation temperature
- Mesoporosity is affected by small differences in gelation
- Synthesis inevitably requires accurate temperature circulators for the preparation of a homogeneous porosity which is essential in high

Physikalischemisches stitut

Institute of Physical Chemistry Justus-Liebig-University Giessen Heinrich-Buff-Ring 17, 35392 Giessen, Germany

Research Group Prof. Dr. B. M. Smarsly

rafael.meinusch@phys.chemie.uni-giessen.de

JUSTUS-LIEBIG-JNIVERSITÄT GIESSEN